Introduction to Mycology

What is mycology? Mycology is simply defined as the study of fungi. Fungi (singular: fungus) are eukaryotic and heterotrophic microorganisms that do not contain chlorophyll but obtains its nutrient through the absorption of food and/or nutrients in its environment. The study of fungi actually began in the early 1830’s following the serendipitous discovery of fungi as the causative agent of the white muscardine disease of silkworm. This discovery was made by Agostino Deo Bassi in 1835, and he was the first to discover that some fungal organisms are pathogenic to other living organisms. This notable discovery was given impetus following the discovery of Sabouraud dextrose agar (SDA) medium (which does not readily support bacterial growth) for the selective isolation of fungi by the French dermatologist and mycologist, Dr. Raymond Jacques Adrien Sabouraud (1864-1938) in the early 1900’s.

Sabouraud dextrose agar (SDA) medium which is widely used today to recover and cultivate fungi was discovered by Dr. Sabouraud who used Sabouraud dextrose agar to cultivate the ringworm fungi he was working with as at the time. Sabouraud dextrose agar was named after Dr. R.J.A Sabouraud, and he is often regarded as the father of mycology because of his discovery of Sabouraud dextrose agar media, a vital tool for fungal studies even till date. The discovery of Sabouraud dextrose agar medium for fungal cultivation and fungi as pathogens of humans, animals and plants set the foundation for the development of the aspect of microbiology known today as mycology. Most fungi are saprophytic in nature and they degrade complex organic matter in the environment to release simpler organic and inorganic molecules which also serve as part of their nutrient. In their saprophytic nature, fungi especially those found in the soil help in nutrient recycling in the ecosystem.

Fungi are generally non-motile and they reproduce sexually and asexually. They are mostly aerobic eukaryotic organisms but some fungi are facultative anaerobes. Fungi grow best at room temperature (i.e. 25oC to 30oC) but some dimorphic (diphasic) fungi can grow in temperatures as high as 35oC. They live mostly in moist environments but can also be found in varied environments including aquatic, marine and terrestrial habitats especially in the soil where they normally colonize; and some fungi are found on the human body as normal microflora. Fungi have enormous impact on the environment as mutualistic symbiotic organisms, decomposers and pathogens of animals, plants and humans. Fungi basically exist in the natural environment in two morphological forms as yeast and moulds.

Yeast and mould are the two basic forms in which fungal organisms are known to grow or develop into. Yeasts are single-celled or unicellular fungi, and they are usually round to oval in shape. Moulds are filamentous-branching forms of fungi that also bear conidia or fungal spores. Moulds are multicellular fungal cells and they appear as threadlike structures. Fungi are ubiquitously distributed in the universe, and they directly or indirectly affect our daily lives even though we may be unaware about some of their activities. The change in the colour of a loaf of bread kept in the refrigerator or in the open after some days is due to fungal activity (moulds in particular).

About 100,000 species of fungi have been described and classified by mycologists, and only a small fraction of these actually cause disease in humans and animals. Majority of fungal organisms cause disease in plants but many fungi serve beneficial purposes to mankind such as a number of industrial processes that involves fermentation. Some notable drugs (e.g. penicillin), foods (e.g. bread and cheese) and drinks (e.g. wine and beer) are typical products of the fermentative action or activities of fungi. Some fungi can exist as both yeast (especially in the parasitic phase) and moulds (especially in the saprophytic phase) in different conditions; and such fungi are generally known as dimorphic or diphasic fungi. Other forms of fungi include mushrooms, puffballs and mildews. Mushroom is another group or class of fungi but they are macro-fungal cells.

Mushrooms are the macroscopic reproductive or fruiting bodies of fungi (Figure 1). They are visible and can be seen around our homes, in bushes, on stored or baked foods and in farms.

Figure 1. Schematic illustration of a mushroom. Mushrooms grow in the natural environment on tree trunks, in association with other vegetations and in the soil on their own but they can also be cultivated for edible and other economic purposes.

Mushroom farming is big time business in many parts of the world, and some mushrooms (e.g. Agaricus bisporus) are important source of food for humans. Other edible mushrooms include Lentinula species, Pleurotus species, Volvariella species and Ganoderma species. Mushrooms possess medicinal value aside their edible benefits; and they are important source of proteins, low fats, vitamins and fibers for humans.

Slime moulds were formerly classified as a form of fungi because they exhibit some fungal characteristics (especially the formation of fruiting bodies) but this is no longer the case as the organism is more protists-like than fungi. Slime moulds (both the cellular and plasmodial forms) are motile amoebic organisms and they differ from fungi phylogenetically even though they may resemble fungal organisms in some way. Unlike bacteria and some prokaryotes that have a peptidoglycan cell wall, fungi have a chitinized rigid cell wall (i.e. cell wall that contains chitin). Table 1 elucidates some key terminology associated with the study of fungi.

Table 1. EXPLANATION OF SOME FUNGAL TERMS 

TermMeaning
  
YeastThe single-celled growth form of some fungi. They reproduce sexually (by spore formation) and asexually (by budding).
HyphaeLong branching filaments or structures of fungi. It is a network of filaments (with cross-walls) formed by multicellular fungi (i.e. moulds). Some fungal hyphae known as coenocytic hyphae are without cross-walls and contain more than one nucleus (i.e. they are multi-nucleated). Fungal hyphae without cross-walls are generally called coenocytic hyphae or non-septate hyphae while those with cross-walls are known as septate hyphae.  
MouldMould is the filamentous form of fungi that exist as hyphae or mycelia colonies. They are multicellular forms of fungi; and moulds grow as filamentous, branching strands of hyphae.
Thallus (plural: thalli)Thallus is the vegetative body of fungi. It can also be known as fungal colony. It is the visible structures of fungi. Fungal thallus structure or organization comprises of fungal hyphae (septate & non-septate), mycelium and fungal spores or conidia.  
Conidia (singular: conidium)Conidia are the asexual reproductive spores of fungi. They are generally known as fungal spores in some cases. However, the term “spores” is usually used to describe the sexual forms of fungi in terms of their reproduction. Thus the term “conidium” is strictly used for the asexual reproductive forms of fungi. In fungi, spores are formed sexually by meiosis and asexually by mitosis.
SporangiosporesSporangiospores are asexual spores produced by zygomycetes. They are borne or enclosed in the sporangia (singular: sporangium) of a fungal thallus.
DermatophytesDermatophytes are fungal cells that cause skin infections or diseases. They are a group of fungal organisms that can degrade the keratin layers or tissues of animals and humans. Dermatophytes mainly affect the nails, skin and hair causing a range of infections generally known as dermatophytosis (e.g. ringworm). Typical examples of dermatophytes are Microsporum species, Epidermophyton species and Trichophyton species.  
Dematiaceous fungiDematiaceous fungi are fungal organisms with cell walls that contain the skin pigment, melanin. Such fungi leave a characteristic black colouration on the skin after an infection or disease.
Septum (plural: septa)Septa are the cross-walls that form in a fungal hypha. They help to differentiate coenocytic hyphae from septate hyphae.
MacroconidiaMacroconidia are large conidia of fungi.  
MicroconidiaMicroconidia are small conidia of fungi.  
PseudohyphaePseudohyphae are chains of an elongated bud. They are usually formed from fungal species whose buds fail to separate from the parent cell, but instead continue to extend to form an elongated budding yeast cells known as pseudohyphae. Pseudohyphae generally have cell walls that are less-rigid than those of hyphae.
Perfect fungiPerfect fungi are fungi that carryout sexual reproduction. They are generally known as teleomorphs. Teleomorphs are fungal organisms with sexual characteristics.
Imperfect fungiImperfect fungi or fungi imperfecti are fungi that reproduce by asexual reproduction. They are generally known as anamorphs. Anamorphs are fungal organisms with asexual characteristics. 
MyceliumMycelium is a mass or network of hyphae. They are generally a collection of intertwined or knotted hyphae that penetrates the supporting medium or environment on which the fungus is growing. 
MushroomMushrooms are fruiting fungal bodies that are macroscopic in nature. They are visible; and are known to grow in moist environments. Some mushrooms are edible while others are poisonous in nature.
PhialidesPhialides are non-septate, colourless or pigmented conidia formed form vegetative hyphae. They are the terminal ends or regions of conidiophores. Phialides are usually formed by Phialophora species and Trichoderma species.
Metulla (singular: metulae)Metulla are short extensions or cell branches which bear one or more phialides in the conidiophores.
Columella (singular: columellae)Columella are axial or central, unicellular or multicellular structures formed within the fruiting body of some fungi. It is an extension of the sporangiophore into the cavity of the sporangium. Columella is seen in Mucor species and myxomycetes amongst other fungi.
SterigmataSterigmata are four small protuberances or finger-like protrusions which are formed at the terminal ends of some vegetative cells; and from which daughter cells or spores emanate by budding.
AscosporesAscospores are the sexual spore of a fungal organism.
Ascus (plural: asci)Ascus is the sac-like fungal structures containing 4 or 8 ascospores. They are mainly formed by the ascomycetes.
DimorphismThe term dimorphism is used to describe a fungus with two growth forms i.e. yeast & mould forms. Some fungi exist as yeast in tissues but as mould in the environment. Such fungi are called dimorphic or diphasic fungi. Examples of dimorphic fungi include Histoplasma capsulatum, Blastomyces dermatitidis, Paracoccidioides species, Candida albicans and Sporothrix species. Dimorphic fungi are mostly responsible for systemic (endemic) mycoses; and they are geographically limited to certain areas. Dimorphism is usually a strategy used by fungi to dodge harsh environmental conditions (such as changes in temperature and nutrients). In plants, dimorphic fungi changes from mould form to yeast i.e. the mould form exist in the plant while the yeast form occurs in the outside environment. But the reverse is the case for human or animal dimorphic fungi where the dimorphic fungi changes from the yeast form (which occur inside the body) to the mould form in the environment.

Fungal cell wall also contains cellulose, lipids, polysaccharides and other complex organic molecules. Fungi are much larger than prokaryotic cells (bacteria in particular), and their cell membrane is very rich in sterols (e.g. ergosterol). Cholesterol and not ergosterol is the sterol that makes up the cell membrane of mammalian and human cells. Most fungal drugs (e.g. amphoteracin B) are selectively toxic because they target the ergosterol component of the fungal cell membrane since the mammalian cell membrane is mainly made up of cholesterol.

Fungi produce sexual and asexual spores that help in their dispersal and reproduction in the natural environment. In bacteria, spore production is strictly for survival purposes especially when environmental condition is harsh for existence but spores of fungi are used for reproduction. Fungi cause a variety of infections in human population as well as in plants and animals.

References

Anaissie E.J, McGinnis M.R, Pfaller M.A (2009). Clinical Mycology. 2nd ed. Philadelphia, PA: Churchill Livingstone Elsevier. London.

Beck R.W (2000). A chronology of microbiology in historical context. Washington, D.C.: ASM Press.

Black, J.G. (2008). Microbiology:  Principles and Explorations (7th ed.). Hoboken, NJ: J. Wiley & Sons.

Brooks G.F., Butel J.S and Morse S.A (2004). Medical Microbiology, 23rd edition. McGraw Hill Publishers. USA.

Brown G.D and Netea M.G (2007). Immunology of Fungal Infections. Springer Publishers, Netherlands.

Calderone R.A and Cihlar R.L (eds). Fungal Pathogenesis: Principles and Clinical Applications. New York: Marcel Dekker; 2002.

Chakrabarti A and Slavin M.A (2011). Endemic fungal infection in the Asia-Pacific region. Med Mycol, 9:337-344.

Champoux J.J, Neidhardt F.C, Drew W.L and Plorde J.J (2004). Sherris Medical Microbiology: An Introduction to Infectious Diseases. 4th edition. McGraw Hill Companies Inc, USA.       

Chemotherapy of microbial diseases. In: Chabner B.A, Brunton L.L, Knollman B.C, eds. Goodman and Gilman’s   The   Pharmacological   Basis   of   Therapeutics.   12th   ed.   New   York, McGraw-Hill; 2011.

Chung K.T, Stevens Jr., S.E and Ferris D.H (1995). A chronology of events and pioneers of microbiology. SIM News, 45(1):3–13.

Germain G. St. and Summerbell R (2010). Identifying Fungi. Second edition. Star Pub Co.

Ghannoum MA, Rice LB (1999). Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev, 12:501–517.

Gillespie S.H and Bamford K.B (2012). Medical Microbiology and Infection at a glance. 4th edition. Wiley-Blackwell Publishers, UK.

Larone D.H (2011). Medically Important Fungi: A Guide to Identification. Fifth edition. American Society of Microbiology Press, USA.

Levinson W (2010). Review of Medical Microbiology and Immunology. Twelfth edition. The McGraw-Hill Companies, USA.

Madigan M.T., Martinko J.M., Dunlap P.V and Clark D.P (2009). Brock Biology of Microorganisms, 12th edition. Pearson Benjamin Cummings Inc, USA.

Mahon C. R, Lehman D.C and Manuselis G (2011). Textbook of Diagnostic Microbiology. Fourth edition. Saunders Publishers, USA.


Discover more from #1 Microbiology Resource Hub

Subscribe to get the latest posts to your email.

Leave a Reply

Discover more from #1 Microbiology Resource Hub

Subscribe now to keep reading and get access to the full archive.

Continue reading